If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-15x-250=0
a = 4; b = -15; c = -250;
Δ = b2-4ac
Δ = -152-4·4·(-250)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-65}{2*4}=\frac{-50}{8} =-6+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+65}{2*4}=\frac{80}{8} =10 $
| 13=x/10+3 | | 4=b/6-6 | | 2h-1=15 | | 8k-6=50 | | 4=p/2-2 | | 28=5f-7 | | 42=8c+2 | | 3=j/4-1 | | 31=6h+1 | | 50=t+10t | | f(2)=4*2-5 | | -9y-7y=42 | | 11x=4+9 | | 9x2+18x=-11 | | 4x^2-8x+4=4(x+5) | | 5x+10(21-×)=125 | | 4x+11/7x=0 | | 20,5x-3,1=x-2 | | 15-10+y=180 | | (1/2)x-12=(3/2)x+4 | | 35=-5(2x-1) | | -6x-16=0 | | 5x-5-x=x+1-x | | (3x+25)∘+(4x−55)∘=180 | | 7x+1=2x-8 | | 1/2x-12=3/2x+4 | | 3w-7=2(w+1) | | 20,5x-3,1=x*2 | | 29=-8u-7+5u= | | 5x-46=2x+5=90 | | 2=4+1x | | -3*4*x=-84 |